CG Trader

3d Female Character
by CG Trader
Last crawled date: 3 years, 1 month ago
* **IMPORTANT NOTE: * * This character is made in blender with help of mixamo fuse so i recommend to use blender files because mixamo file may have textures problems
* I am Muhammad Hassaan. 3d animator, 3d designer, Video editor, whiteboard animator, 2d animator, Web developer, Game designer and app developer by experience. I am Doing 3d work from 3 years and video editing for 2 years. Made two websites and two games. I have also made two apps. Edited 25 videos and made about 5 animations and 30 3d models. 2 whiteboard animations and doing work on 2d animation. Want to provide best services on a low rate for helping people. First priority will be your happiness. Hope you will not be disappointed by my work. I am now presenting this 3d female character made by me with great textures and many hours of work. This model is completely rigged and ready for animation. This model is full professionaly rigged with controllers.
Let us talk about blender: Blender is a free and open-source 3D computer graphics software toolset used for creating animated films, visual effects, art, 3D-printed models, motion graphics, interactive 3D applications, virtual reality, and, formerly, video games. Blender's features include 3D modelling, UV mapping, texturing, digital drawing, raster graphics editing, rigging and skinning, fluid and smoke simulation, particle simulation, soft body simulation, sculpting, animation, match moving, rendering, motion graphics, video editing, and compositing. n 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of any surface of an object (inanimate or living) in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.[1][2][3] Three-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc.[4] Being a collection of data (points and other information), 3D models can be created manually, algorithmically (procedural modeling), or by scanning.[5][6] Their surfaces may be further defined with texture mapping. Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, texture, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term rendering is analogous to the concept of an artist's impression of a scene. The term rendering is also used to describe the process of calculating effects in a video editing program to produce the final video output. Rendering is one of the major sub-topics of 3D computer graphics, and in practice it is always connected to the others. It is the last major step in the graphics pipeline, giving models and animation their final appearance. With the increasing sophistication of computer graphics since the 1970s, it has become a more distinct subject. Rendering has uses in architecture, video games, simulators, movie and TV visual effects, and design visualization, each employing a different balance of features and techniques. A wide variety of renderers are available for use. Some are integrated into larger modeling and animation packages, some are stand-alone, and some are free open-source projects. On the inside, a renderer is a carefully engineered program based on multiple disciplines, including light physics, visual perception, mathematics, and software development. Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image on a screen from a 3D representation stored in a scene file are handled by the graphics pipeline in a rendering device such as a GPU. A GPU is a purpose-built device that assists a CPU in performing complex rendering calculations. If a scene is to look relatively realistic and predictable under virtual lighting, the rendering software must solve the rendering equation. The rendering equation doesn't account for all lighting phenomena, but instead acts as a general lighting model for computer-generated imagery. In the case of 3D graphics, scenes can be pre-rendered or generated in realtime. Pre-rendering is a slow, computationally intensive process that is typically used for movie creation, where scenes can be generated ahead of time, while real-time rendering is often done for 3D video games and other applications that must dynamically create scenes. 3D hardware accelerators can improve realtime rendering performance. character model female woman cartoon girl body human rigged rig 3d realistic leg face animated figure game male animation movie
* I am Muhammad Hassaan. 3d animator, 3d designer, Video editor, whiteboard animator, 2d animator, Web developer, Game designer and app developer by experience. I am Doing 3d work from 3 years and video editing for 2 years. Made two websites and two games. I have also made two apps. Edited 25 videos and made about 5 animations and 30 3d models. 2 whiteboard animations and doing work on 2d animation. Want to provide best services on a low rate for helping people. First priority will be your happiness. Hope you will not be disappointed by my work. I am now presenting this 3d female character made by me with great textures and many hours of work. This model is completely rigged and ready for animation. This model is full professionaly rigged with controllers.
Let us talk about blender: Blender is a free and open-source 3D computer graphics software toolset used for creating animated films, visual effects, art, 3D-printed models, motion graphics, interactive 3D applications, virtual reality, and, formerly, video games. Blender's features include 3D modelling, UV mapping, texturing, digital drawing, raster graphics editing, rigging and skinning, fluid and smoke simulation, particle simulation, soft body simulation, sculpting, animation, match moving, rendering, motion graphics, video editing, and compositing. n 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of any surface of an object (inanimate or living) in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.[1][2][3] Three-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc.[4] Being a collection of data (points and other information), 3D models can be created manually, algorithmically (procedural modeling), or by scanning.[5][6] Their surfaces may be further defined with texture mapping. Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, texture, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term rendering is analogous to the concept of an artist's impression of a scene. The term rendering is also used to describe the process of calculating effects in a video editing program to produce the final video output. Rendering is one of the major sub-topics of 3D computer graphics, and in practice it is always connected to the others. It is the last major step in the graphics pipeline, giving models and animation their final appearance. With the increasing sophistication of computer graphics since the 1970s, it has become a more distinct subject. Rendering has uses in architecture, video games, simulators, movie and TV visual effects, and design visualization, each employing a different balance of features and techniques. A wide variety of renderers are available for use. Some are integrated into larger modeling and animation packages, some are stand-alone, and some are free open-source projects. On the inside, a renderer is a carefully engineered program based on multiple disciplines, including light physics, visual perception, mathematics, and software development. Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image on a screen from a 3D representation stored in a scene file are handled by the graphics pipeline in a rendering device such as a GPU. A GPU is a purpose-built device that assists a CPU in performing complex rendering calculations. If a scene is to look relatively realistic and predictable under virtual lighting, the rendering software must solve the rendering equation. The rendering equation doesn't account for all lighting phenomena, but instead acts as a general lighting model for computer-generated imagery. In the case of 3D graphics, scenes can be pre-rendered or generated in realtime. Pre-rendering is a slow, computationally intensive process that is typically used for movie creation, where scenes can be generated ahead of time, while real-time rendering is often done for 3D video games and other applications that must dynamically create scenes. 3D hardware accelerators can improve realtime rendering performance. character model female woman cartoon girl body human rigged rig 3d realistic leg face animated figure game male animation movie